【菜科解读】
潜水员们在希腊扎金索斯的海岸不远处发现了平顺的地板及类似圆形房柱的基座,以为发现了一个古老文明的遗迹,这个遗迹可能比他们想像的更古老,但是据最新考证结果,它不是人类修筑的。
科学家们在《海洋和石油地质》 Marine and Petroleum Geology杂志上指出, 这个遗迹不是在古希腊时期创建或被遗弃的,而是大约在五百万年前上新世时代 Pliocene era的产物,是微物种而不是希腊人做成的。
英国东安格利亚大学 the University of East Anglia的环境科学教授朱利安?安德鲁斯表示:"潜水员浮潜时发现该遗迹,首先以为这是一个古老的港口城市,经历了几番沧海桑田最后沉积到了海底。
有一些像圆形柱基或地板的建筑,但是神奇的是没有什么生活的迹象,好比找不到陶器类等东西。
"
因为缺了这些东西导致科学家作了进一步的调查。
矿物学和化学分析表明,他们并未发现曾被巨浪袭击,最终被海水淹没的古老文明遗迹,而只是一个古老地质演变的自然过程。
研究人员判断这也有可能是次地表层缺陷,海底的沉积物喷出甲烷气体造成这样的地层结构。
安德鲁斯博士告诉CNN:"本遗址并没有流动液体泄漏出来,不过话说回来,气体泄漏在世界各地是相当普遍寻常的现象。
"
对于生活在沉积层的微物种,甲烷气体变成了燃料。
因为它们可以氧化气体,所以使沉积物本身的组合变化成为了类似水泥的组合物,一种叫做结石的过程。
侵蚀暴露了这种像水泥似的物质本来就是白云石。
"这种现象在浅水区相当罕见,本次的发现是位于水面下约两到五米左右。
通常类似发现都在数百甚至数千米深的水下。
"
研究人员表示虽然这化石不是个古城的遗迹,但潜水员们还会有兴趣去探索。
安德鲁斯告诉CNN :"尽管科学家们曾想像的这古老文明的遗迹本来从来没有被人类使用过,但它现在成了保护地中海区域鱼类的鱼礁。
"
分析显示,合并后的黑洞质量约为太阳的142倍,而其“父母”黑洞的质量分别为太阳的66倍和85倍。
这一发现被认定为首个对中等质量黑洞的直接探测,填补了恒星质量黑洞(约100倍太阳质量)与超大质量黑洞(百万至十亿倍太阳质量)之间的质量空白。
高质量间隙黑洞的突破性意义此次发现的85倍太阳质量黑洞具有特殊意义。
根据现有恒星演化模型,质量超过65倍太阳的黑洞无法通过单颗恒星坍缩形成,因其超新星爆发会完全摧毁恒星核心,无法留下坍缩为黑洞的物质。
该黑洞的发现首次明确了“高质量间隙”(恒星质量黑洞与中等质量黑洞之间)的存在,挑战了传统理论,并为研究黑洞形成机制提供了新方向。
引力波探测技术的关键作用传统黑洞探测依赖间接方法(如观测黑洞吞噬物质时释放的辐射),而引力波探测技术(如LIGO)通过捕捉双黑洞合并产生的时空涟漪,实现了对黑洞的直接观测。
GW190521的信号虽仅持续十分之一秒,但科学家通过分析其特征(如频率、振幅),结合爱因斯坦广义相对论,确认了中等质量黑洞的诞生。
这一技术突破为黑洞研究开辟了新途径。
科学界的争议与未解问题尽管证据确凿,但科学家对GW190521的性质仍存在争议。
部分学者认为,该事件可能代表了一种全新的双黑洞类型,而另一部分则认为其可能是已知高质量黑洞的特殊案例。
此外,中等质量黑洞的数量稀少性(全宇宙仅探测到少数案例)及其形成机制(如是否通过多次合并或未知过程产生)仍是未解之谜。
这些争议推动了后续研究,例如通过更大规模的引力波探测网络(如LISA)进一步验证结果。
对超大质量黑洞形成之谜的启示中等质量黑洞的发现为解锁超大质量黑洞的形成提供了关键线索。
目前主流理论认为,超大质量黑洞可能由中等质量黑洞通过持续吸积物质或多次合并逐步增长形成。
GW190521的案例支持了这一假设,即中等质量黑洞可作为超大质量黑洞的“种子”,在宇宙早期环境中通过复杂过程演化而来。
引力波天文学的黎明时代科学家普遍认为,当前引力波天文学仍处于初级阶段,但GW190521的发现标志着该领域的重大突破。
正如西北大学天文学家蔡斯·金博所言:“我们正处在引力波天文学的黎明时代,这一发现不仅回答了现有问题,更提出了大量新问题。
”未来,随着探测技术的升级(如第三代引力波探测器)和国际合作(如LIGO-Virgo-KAGRA网络),人类对黑洞的认知将进一步深化。
总结:中等质量黑洞的发现已通过引力波探测得到直接证实,其存在为黑洞质量分布、形成机制及超大质量黑洞演化等核心问题提供了关键证据。
尽管部分细节仍存争议,但这一发现无疑推动了天文学前沿研究,标志着人类对宇宙奥秘的探索迈出了重要一步。
1. 宇宙相关宇宙由什么构成:已知宇宙大部分质量由难以直接观测的暗物质构成,暗能量则推动宇宙加速膨胀,但具体成分和性质不明。
宇宙是否唯一:目前不清楚我们所在的宇宙是独一无二的,还是存在多元宇宙。
是什么驱动宇宙膨胀:科学家发现宇宙在加速膨胀,但对于推动这种膨胀的能量来源(暗能量)的本质了解有限。
黑洞的本质是什么:黑洞具有强大引力,连光都无法逃脱,其内部的物理规律和结构仍是未解之谜。
正物质为何多于反物质:在宇宙诞生之初,理论上正物质和反物质应等量产生,但现实中正物质占主导,原因未知。
2. 生命科学相关意识的生物学基础是什么:不清楚意识究竟是大脑活动的结果,还是某种更深层次的存在。
为什么人类基因会如此之少:人类的基因数量相对较少,但却展现出高度的复杂性和智能,其具体机制有待研究。
遗传变异与人类健康的相关程度如何:尚未明确遗传变异在多大程度上影响人类健康及疾病的发生发展。
是什么控制着器官再生:一些生物具有强大的器官再生能力,而人类的再生能力有限,控制器官再生的机制尚不明确。
地球生命在何处产生、如何产生:地球上的生命如何从无机物中诞生的过程仍不明确。
3. 物理相关物理定律能否统一:广义相对论和量子力学分别在宏观和微观领域取得成功,但如何将二者统一是理论物理的一大难题。
量子不确定性和非局部性背后是否有更深刻的原理:量子力学中一些奇特现象背后可能存在更基本的物理规律等待发掘。
重力的本质是什么:虽然牛顿和爱因斯坦对重力有不同的解释,但重力的本质和产生机制还有待深入探究。
时间为何不同于其他维度:时间具有单向性等独特性质,与空间维度有明显区别,其原理尚未明确。
是否存在比夸克更小的基本粒子:目前夸克被认为是基本粒子,但不能排除存在更小构成单元的可能。
这份清单虽已发布近二十年,但其提出的问题仍是当今科学界致力攻克的核心方向,后续科学进展如引力波的发现等均与之紧密相关。