“尘土飞扬”的档案激发了1886年查尔斯顿地震的新故事

对场景的计算机分析揭示了进入场景
【菜科解读】
这张照片拍摄于1886年查尔斯顿地震后的第二天,似乎捕捉到了向右偏移的铁路。
对场景的计算机分析揭示了进入场景的距离(以米为单位)和偏移,从而讲述了不同的故事。
轨道在弯曲处由于大约4英寸的纵向压缩而弯曲。
插图显示了2023年的同一条赛道。
来源:uux.cn/Bilham and Hough
(神秘的地球uux.cn)据科罗拉多大学博尔德分校:1886年8月31日晚些时候,当许多人还在睡觉时,一场大地震震撼了南卡罗来纳州查尔斯顿及其周边地区,建筑物倒塌,铁轨弯曲,沙子因液化而“沸腾”或起泡。
当震动停止时,大约2000座建筑物受损,至少60人丧生。
1886年查尔斯顿地震是袭击美国东部最强烈的地震之一,远在波士顿、芝加哥和新奥尔良都有震感。
从1670年欧洲人第一次在查尔斯顿定居到那时,该地区只经历了偶尔的轻微地震活动。
当余震袭击该地区时,地质学家和工程师迅速进入现场,记录详细的记录并拍摄损坏情况的照片。
他们的观测以令人印象深刻的细节捕捉到了地面扰动,但科学家们还没有完全理解地震和断层之间的关系,因此他们无法拼凑出完整的故事。
美国地质调查局的地震学家苏珊·霍夫说:“查尔斯顿地震发生的时间是独一无二的。
”。
“如果它发生在75年前,我们会有更少的科学家接受培训并能够采取行动。
如果它发生于10年后,地震图可能会记录下震动。
”
地震发生一个多世纪后,Hough和CIRES研究员、科罗拉多大学博尔德分校的研究科学家Roger Bilham在原始记录和最近试图拼凑这场致命地震的故事的基础上,找到了这条线索。
Bilham说:“尽管在查尔斯顿周围的沼泽地下已经发现了十几条可能的断层,但在地震中破裂的实际断层仍然是个谜。
”。
该团队对历史文件的搜索促使人们对查尔斯顿地震有了令人兴奋的新发现——从可能导致地震的断层到地面的震级和变形。
他们的工作于2023年和2024年发表在一系列四篇论文中,为科学家如何利用历史文献揭开其他地质谜团提供了一个例子。
在地震活动不太频繁的大陆板块内部,这项工作可能有助于社区更好地评估未来地震的风险。
现场证据显示断层作用
Hough和Bilham通过深入挖掘事件的书面记录,包括采矿工程师Earle Sloan的记录,开始了对查尔斯顿地震的调查,他对查尔斯顿辐射的三条铁路的损坏进行了细致的记录和测量。
他们怀疑斯隆笔记中隐藏的线索可以帮助他们确定造成地震的断层。
但他们必须先克服一些障碍。
Bilham解释说:“把这些数字转换成一个令人信服的故事简直是一场噩梦。
”。
“1886年的纸币无意中包含了输入错误和打字错误,这些错误和错误不分青红皂白地将搭扣的位置来回移动。
”
2022年,该团队前往查尔斯顿,希望能解开这场混乱。
他们将注意力集中在萨默维尔的一段铁轨上,1886年有报道称那里发生了严重的轨道骚乱。
Bilham建议他们使用GPS方法来确定观测位置,斯隆使用铁路里程桩进行了统计。
令他们非常惊讶的是,科学家们发现了一条4.5米(14.8英尺)的直线轨道向右偏移。
起初,科学家们不敢相信偏移量的大小,但仔细阅读斯隆的笔记后,他们发现他也描述了同一位置的偏移量。
偏移可能意味着轨道下方的断层已经移动。
现代地质学家已经在该地区发现了萨默维尔断层,但没有人将其与1886年的地震联系起来。
霍说:“这是一个偶然的时刻,为这个项目开辟了一个全新的维度。
”。
当他们查看该地区的历史地图时,Bilham和Hough还发现,Summerville在地震后似乎上升了1米(3.3英尺),而附近多切斯特堡的码头自17世纪建造以来一直没有受到干扰。
这些发现证实了1886年萨默维尔附近发生的重大事件。
识别罪魁祸首的新模型
为了确定1886年查尔斯顿地震的断层,科学家们建立了萨默维尔断层运动的数学破裂模型,该模型可以解释考古和地质证据,包括铁路轨道的右偏移和萨默维尔的隆起。
Bilham和Hough发现,沿着向西倾斜的萨默维尔断层的运动可以解释为什么该镇的位置高于周围的沼泽。
该模型指出震级为7.3级,这与地震的大“感觉”区域和之前的估计一致。
他们于2023年在《地震记录》上发表了研究结果。
Hough说:“事实证明,你可以把这些碎片放在一起,以确定导致地震的断层,并为断层是如何破裂的提出一个详细的模型。
”。
“这是第一次有人在查尔斯顿地震中这样做。
”
在确定了潜在的罪魁祸首后,Hough和Bilham将注意力转移到了地面上的影响上。
利用故障位置,他们模拟了不同位置的震动情况,并将结果与旧记录中的观测结果进行了比较。
这一比较结果于2024年1月发表在《美国地震学会公报》上,支持了他们提出的7.3级震级。
变形轨道保留地震波
比拉姆继续挖掘历史文献,以找出距离萨默维尔20英里的铁轨为什么会弯曲和撕裂。
“这是一项具有里程碑意义的事业,”霍说。
“这就像斯隆把火炬传给了罗杰。
”
查尔斯顿地震后第二天拍摄的一张旧照片显示,铁轨穿过低洼沼泽的地方似乎有一段偏移。
许多科学家利用这张照片推断出该地区的断层活动。
科学家们使用原始照片中一千个点的精确测量构建了变形铁路轨道的虚拟3D视图,该照片保存在查尔斯顿博物馆的档案中。
这项工作带来了另一个令人震惊的认识——查尔斯顿周围弯曲的轨道共同记录了从震中传来的地震波的收缩和压缩。
Bilham说:“我们能够证明,所有地方都发生了弯曲,管线受到的压缩超过了伸缩缝的允许范围,管线在膨胀螺栓断裂的地方已经分开。
”。
这项工作也发表在《美国地震学会公报》上。
大局
Hough和Bilham的努力表明,即使在137年后,科学家们仍然可以了解查尔斯顿地震的新情况,并有助于更广泛地了解该地区的地震活动。
霍说:“查尔斯顿是一块砖。
”。
“现在,我们了解了一个地点的一个事件,但要拼凑出更大的画面,还有很多工作要做。
”
像查尔斯顿这样的板块内地震与同类地震不同,后者发生在大块地壳相互摩擦的地方。
没有单一的模式来解释它们发生的原因,而且通常情况下,每个事件都需要进行独特的调查。
但霍夫希望他们的工作能激励科学家更深入地研究过去和未来。
世界地球日:探访人类起源地
从上世纪前半叶开始,科学家们发现了大量古人类的记录,其中最古老的当属上世纪70年代在埃塞俄比亚发现的距今350万年的南方古猿化石——“露西”,此外还有在坦桑尼亚东北部莱托里地区发现的360万年前的南方古猿脚印。
关于人类起源的问题,考古界有着众多的研究和争论,但根据目前掌握的化石证据,早于180万年前的都只发现在非洲,而且绝大多数发现在非洲东部的东非大裂谷中,所以我们还只能说人类最初的起源地在非洲,那么为什么大多数古人类的化石和遗迹在东非大裂谷呢?东非大裂谷的火山作用和古人类的演化东非大裂谷全长6500千米,像一个巨大的“之”字形纵横盘绕在非洲大地上,被称为“地球上最大的伤疤”。
东非大裂谷的形成和演化对东部非洲的地理环境、气候和植被产生了深远的影响。
裂谷内的岩浆活动和火山喷发造成了地壳抬升并导致气候的变化,与裂谷形成前温暖湿润的森林相比,这里变得越来越炎热和干燥,树木稀少,成为典型的热带草原气候。
环境的变化为古人类的演化提供了必要条件,位于肯尼亚境内的图尔卡纳湖盆地被称为人类的摇篮。
最近,在当地发现了一些食草性古生物的牙齿,揭示出这个地区在“人属”首次出现时所具有的独特气候条件。
芬兰赫尔辛基大学的米克尔团队,通过研究该地区食草型古动物牙齿化石,推算出这个地区800万年前的气温和降水情况。
研究数据显示,整个东非地区曾在“人属”出现的时期(约300万~200万年前)变得十分干燥,而图尔卡纳湖盆地干涸得更早一些,在那里进化的物种更能适应之后普遍的干燥环境。
这让图尔卡纳盆地变成了“物种加工厂”,成为新物种诞生之地。
虽然气候变化在人类进化史中所扮演的角色还不是很清楚,但气候变化确实会影响动物的食谱。
此外,人类物种史上的灭绝和迁徙似乎都与不稳定的气候状况有关联。
一些研究学者认为人类大脑变大和双足进化都是为了更好地适应气候变化。
东非大裂谷的火山作用与古人类遗迹的保存奥杜威和莱托里古人类遗址位于坦桑尼亚恩戈罗火山台地的西坡。
从上世纪50年代开始,科学家们陆续在该地区发掘了90多件古人类化石和上千件石器。
化石和文物埋藏在火山碎屑和火山灰形成的沉积物中。
许多学者对奥杜威和莱托里的地层进行了研究,结果表明,奥杜威的熔岩和凝灰岩形成于204万~183万年之前的火山喷发。
莱托里的下部地层岩石的喷发时间介于430万~376万元之间,而上部岩石的喷发时间介于376万~349万年。
火山灰中含有大量的铁、铝、铜、锌、镁、钙等微量元素,火山灰形成的土壤又具有非常好的通透性,非常适合的植物生长。
可以想象,在300万年前,这里还生长着茂盛的灌木和草原,为动物们提供了丰富的食物。
一群南方古猿穿过一片沼泽寻找食物,在他们身后留下了深深的足迹。
这时,不远处的火山突然喷发,释放出大量的有毒气体,使得动植物迅速死亡。
大量的火山灰被喷射到空中,遮天蔽日,雷电交加。
随后火山灰降落到地表,覆盖在动植物的尸体之上,将当时发生的灾难深深地埋藏了起来。
结 语我国著名历史地理学家葛剑雄教授称,“东非大裂谷产生后,地理环境发生了剧烈变化,这推进了生物进化的进程,人类的出现也成为了可能。
尼罗河与地中海优越的地理环境,也使古人类从非洲走向世界各地成为可能”。
非洲古人类的起源和演化与东非大裂谷的地质活动密切相关。
东非大裂谷剧烈的构造运动,造成东非高原生态环境的多样性,气候的变化刺激了生物进化,最终导致古人类的出现。
而强烈的火山喷发,在短期内引起动植物的大量死亡,喷发的火山灰降落在地表,为古人类化石和遗迹的保存提供了重要条件。
第一次观察到白矮星的X射线爆炸现象
这种死亡的太阳有时会在一次超热的爆炸中恢复活力并产生一个X射线辐射的火球。
来自包括图宾根大学在内的几个德国机构的一个研究小组在弗里德里希-亚历山大-纽伦堡大学(FAU)的领导下第一次观察到了这样一个X射线光的爆炸。
“这在某种程度上是一个幸运的巧合,真的,”来自FAU天文学机构的Ole König指出“这些X射线闪光只持续几个小时,几乎不可能预测,但观测仪器必须在准确的时间直接对准爆炸。
”他跟Jörn Wilms博士教授和来自马克斯-普朗克地外物理研究所、图宾根大学、巴塞罗那加泰罗尼亚理工大学和波茨坦莱布尼茨天体物理研究所的研究团队一起在《自然》上发表了一篇关于这次观测的文章。
这种情况下的仪器是eROSITA X射线望远镜,它目前位于离地球一百五十万公里的地方,自2019年以来一直在调查天空中的软X射线。
2020年7月7日,它在天空中的一个区域测量到了强烈的X射线辐射,而这个区域在4小时前是完全不显眼的。
四小时后,当X射线望远镜测量天空中的同一位置时辐射已经消失了。
由此可见,之前完全过度暴露在探测器中心的X射线闪光一定持续了不到8小时。
像这样的X射线爆炸在30多年前就被理论研究所预测,但直到现在还没有被直接观察到。
这些X射线的火球发生在太阳的表面,这些太阳在用完大部分由氢和后来在其核心深处的氦组成的燃料之前其大小跟太阳相仿。
这些太阳的尸体不断缩小,直到剩下白矮星,它们的大小跟地球相似,但其质量可能跟我们的太阳相似。
“想象这些比例的一种方法是把太阳想象成跟苹果一样大小,这意味着地球将跟针头一样大小并以10米的距离围绕苹果运行,”Jörn Wilms解释道。
来自图宾根大学的Victor Doroshenko博士补充称:“这些所谓的新星确实一直在发生,但在大多数X射线发射产生的最初时刻探测它们真的很难。
不仅闪光的持续时间短是一个挑战,而且发射的X射线的光谱非常软。
软X射线的能量不大,容易被星际介质吸收,所以我们在这个波段不能看得很远,这就限制了可观察的物体的数量--无论是新星还是普通的太阳。
望远镜通常被设计成对较硬的X射线最有效,因为那里的吸收不那么主要,而这正是它们会错过这样一个事件的真相!”Victor Doroshenko总结道。
另一方面,如果要把一个苹果缩小到针头大小,那么这个微小的颗粒将保留苹果相对较大的重量。
Jörn Wilms继续称:“来自白矮星内部的一茶匙物质很容易就具有跟一辆大卡车相同的质量。
由于这些烧毁的太阳重要由氧和碳组成,我们可以把它们比作在宇宙中漂浮的与地球同样大小的很大钻石。
这些珍贵宝石形式的物体温度很高,会发出白色的光芒。
然而这种辐射非常微弱,从地球上很难探测到。
除非白矮星伴随着一颗仍在燃烧的太阳,也就是说,当白矮星很大的引力从伴随的太阳外壳中吸引氢气时。
FAU的天体物理学家Jörn Wilms说道:“随着时间的推移,这些氢气可以在白矮星的表面聚集成一个只有几米厚的层。
”在这层中,很大的引力产生了很大的压力,这种压力非常大,以至于大到导致太阳重新点燃。
在一个连锁反应中,它很快就会发生很大的爆炸,期间氢气层被炸掉。
像这样的爆炸的X射线辐射就是2020年7月7日击中eROSITA探测器的真相,产生了一个过度曝光的图像。
“对来自白矮星大气层的X射线辐射的物理来源的理解相对较好,我们可以从第一原理和精致的详情中建立它们的光谱模型。
将模型跟观测结果进行比较可以了解这些物体的基本属性,如重量、大小或化学成分,”来自图宾根大学的Valery Suleimanov博士说道,“然而,在这种特殊情况下的问题是,在30年没有光子的情况下,我们突然有了太多的光子,这扭曲了eROSITA的光谱反应,eROSITA的设计则是为了探测数以百万计的非常微弱的天体,而不是一个但非常璀璨的物体”,Victor Doroshenko补充道。
Jörn Wilms则表示:“利用我们最初在支持X射线仪器开发时拟定的模型计算,我们能在一个复杂的过程中更详细地分析曝光过度的图像,从而获得一个白矮星或新星爆炸的幕后观点。
”根据这些结果,,这颗白矮星的质量大约相当于我们的太阳,因此相对较大。
爆炸产生了一个温度约为327,000摄氏度的火球,这使其温度为太阳的60倍。
“这些参数是通过将X射线辐射模型跟Valery Suleimanov和Victor Doroshenko在图宾根创建的非常热的白矮星所发出的辐射模型相结合,以及在FAU和MPE进行的远远超出规格的制度下对仪器反应的非常深入的分析而获得的。
我认为这很好地说明了现代科学中合作的主要性--以及德国eROSITA联盟中广泛的专业知识,”来自图宾根大学的Klaus Werner教授博士补充道。
由于这些新星很快就耗尽了燃料,它们会迅速冷却,X射线辐射则会变得更弱并直到最后变成可见光,其在eROSITA探测到的半天后到达地球并被光学望远镜观测到。
Ole König指出,随后出现了一颗看似璀璨的太阳,这实际上是来自爆炸的可见光且非常璀璨,以至于在夜空中可以用肉眼看到它,“像这样看似‘新星’的现象在过去也曾被观测到过。
由于这些新星只有在X射线闪光后才干看到,因此很难预测这种爆发,当它们撞上X射线探测器时重要是靠运气。
”