【菜科解读】
木星是一颗巨大的气态行星,其质量约为地球的318倍,体积更是高达地球的1300多倍,在太阳系八大行星中,木星是绝对的“老大”,这使得我们人类对这颗巨大的行星格外关注,关于木星的各种稀奇古怪的问题也层出不穷。

比如说有人就提出了这样一个问题:既然木星是气态行星,那如果把木星上的气体全部吹走,会有什么结果呢?下面我们就来讨论一下。
首先要讲的是,所谓的气态行星并不是指全部是由气体构成的行星,而是指不以岩石或者其他类型的固体为主要成分、没有确定的固态表面的行星,也就是说,气态行星也是可以拥有固态核心的。
那么木星到底有没有固态核心呢?其实这个问题的答案也是科学家们很想知道的。
尽管以人类当前的科技水平,暂时还不能直接进入到木星深处去直接探索,但通过探测器在木星附近收集到的数据,我们还是可以间接猜测出木星的内部结构。
如上图所示,在探测器飞越木星的过程中,其发出的无线电信号会因为木星的引力变化而出现细微的多普勒频移,通过大量对照探测器的实际轨道和理论轨道的差异,就可以构建出木星的重力场模型,进而猜测出木星内部的质量分布。
科学家根据“先驱者10号”、“旅行者1号”、“旅行者2号”、“伽利略号”、“朱诺号”等多个探测器传回的数据猜测出,木星很可能存在一个由重元素构成的固态内核,其质量在地球的12倍至45倍之间注:这里的重元素是指比氢和氦更重的元素。

因此科学界普遍认为,木星应该有一个致密的固态核心,其外包裹着大量的氢和氦注:木星主要由氢和氦构成,其中氦占其质量的大约4分之1,其他的绝大部分都是氢。
由于随着深度的增加,木星上的物质会逐渐变得更热、也更致密,因此木星的结构应该是:最外层是气态的氢和氦,当深度增加到一定程度时,氢和氦就以液态存在,而在更深的位置,极端的压强会将氢原子中的电子“挤”出来,使得它们像金属一样可以导电,这种状态的氢也被称为“金属氢”,在此之下就是木星的固态核心大概如下图所示。
据此我们可以得出,木星上层的气体一旦消失,木星上的那些原来处于高压状态下的液态氢、液态氦以及“金属氢”都会因为失压而转变成气体,在这种情况下,如果把木星上的气体全部吹走,其结果就是木星会失去几乎所有的氢和氦,只剩下一个比原来小得多的固态核心。
值得一提的是,虽然我们人类目前并没有能力把像木星这样的气态行星上的气体全部吹走,但宇宙中那些能量巨大的太阳却可以做到。
从理论上来讲,假如一颗气态行星与其主太阳的距离太近,它的气体就会被主太阳不断地剥离,久而久之,这颗气态行星就会只剩下一个固态核心如果它有的话,科学家给这种奇特的天体起了一个奥秘的名字——“冥府行星”Chthonian planet。
有意思的是,我们有可能已经发现了一颗“冥府行星”。
这颗星球被命名为“TOI-849b”,距离地球大约730光年,由“凌星系外行星巡天卫星”TESS于2020发现,其主太阳被命名为“TOI-849”,是一颗与太阳相似的黄矮星。
观测数据表明,“TOI-849b”的体积与我们太阳系中的海王星差不多,但它的质量却大约是海王星的2.3倍,地球的39.1倍,密度约为5.2克/立方厘米,与像地球这样的岩石行星相当。

另一方面来讲,“TOI-849b”距离它的主太阳非常近,以至于其表面温度可以高达1530摄氏度左右,并且大约每18个小时,它就会完成一次公转。
所以我们可以做一个合理的猜测,“TOI-849b”曾经是一颗与木星相似的气态行星,后来因为某种原因迁徙到了距离其主太阳非常近的轨道,在此之后,它的气体就持续地被主太阳“吹”走,最终演化成了一颗“冥府行星”,而这也很可能就是木星上的气体被全部吹走后的结果。
好了,今天我们就先讲到这里,欢迎大家关注我们,我们下次再见。
随着科学技术的发展,我们对宇宙的了解越来越深入。
科学对宇宙探索的贡献是巨大的,它不仅帮助我们揭示了宇宙的秘密,也推动了人类社会的进步。
那么,科学对宇宙探索的贡献有多大?未来的宇宙探索又将如何发展?科学对宇宙探索的贡献1. 揭示宇宙的秘密:科学的发展使我们能够使用望远镜等工具,观察到遥远的星系和星体,揭示了宇宙的广阔和深邃。
例如,哈勃太空望远镜的发射,使我们能够观察到更远的宇宙,揭示了宇宙的加速膨胀现象。
2. 推动技术的进步:为了探索宇宙,科学家们发明了许多先进的技术和设备,如火箭、卫星、探测器等。
这些技术的发展,不仅推动了宇宙探索的进步,也推动了其他领域的发展。
3. 提供理论支持:科学的发展提供了许多理论,如大爆炸理论、黑洞理论等,这些理论为我们理解宇宙提供了重要的理论支持。
未来的宇宙探索将如何发展?1. 深空探测:随着科技的发展,我们将有能力向更深的宇宙进发。
例如,火星探测计划正在进行中,我们期待在未来能够实现火星的载人登陆。
2. 寻找外星生命:科学家们正在寻找宇宙中的其他生命形式。
例如,通过分析遥远星系的光谱,我们可以寻找可能存在生命的行星。
3. 研究黑洞和暗物质:黑洞和暗物质是宇宙中的两大未解之谜。
科学家们正在通过各种方法,如重力波探测,来研究这两个问题。
4. 建立月球基地:月球作为地球的邻居,具有重要的科研价值。
未来,我们可能会在月球上建立基地,进行长期的科研活动。
科学对宇宙探索的贡献是巨大的,它不仅帮助我们揭示了宇宙的秘密,也推动了人类社会的进步。
未来的宇宙探索将更加深入和广泛,我们期待着更多的科学发现和技术突破。
然而,我们也需要注意到,宇宙探索不仅是科学的探索,也是人类的探索。
我们需要在探索的同时,保护好我们的家园——地球。
总的来说,科学对宇宙探索的贡献是无法估量的。
它不仅帮助我们揭示了宇宙的秘密,也推动了人类社会的进步。
未来的宇宙探索将更加深入和广泛,我们期待着更多的科学发现和技术突破。
然而,我们也需要注意到,宇宙探索不仅是科学的探索,也是人类的探索。
我们需要在探索的同时,保护好我们的家园——地球。
它利用射电波段的电磁辐射,可以突破地球大气层的限制,探索宇宙的奥秘。
下面将详细介绍射电望远镜的起源、发展和应用。
射电望远镜的起源可以追溯到20世纪初。
当时,科学家们意识到天空中可能存在着一种与可见光不同的射电辐射。
1920年代,天文学家亚历山大·斯密斯森首次捕捉到了来自太阳的射电信号。
随后,射电天文学开始崭露头角,并取得了多项重要的发现。
射电望远镜的发展经历了几个重要的阶段。
早期的射电望远镜主要采用天线式结构,类似于电台的天线。
这些天线能够接收到广泛的射电信号,并转换成电信号进行分析。
这些简单的天线带来了许多重要的发现,如背景微波辐射、银河系中心的射电源等。
随着技术的不断进步,射电望远镜的性能不断提升。
在20世纪50年代,人们开始建造更大型、更精密的射电望远镜。
这些望远镜通常采用抛物面反射镜和接收机组合的结构,能够聚集更多的射电波,并提供更高分辨率的观测能力。
20世纪60年代以后,人们建造了一系列大型国际射电望远镜项目。
其中最著名的是欧洲的“西门子大型射电望远镜”和美国的“甘迺迪射电天文台”。
这些射电望远镜不仅在观测能力上取得了革命性的突破,而且在技术和数据处理方面也有了重大进展。
射电望远镜在科学研究中发挥着重要的作用。
它可以探测到宇宙中的许多不可见的现象,如星际气体、超新星遗迹、脉冲星、活动星系核等。
射电望远镜还可以探索宇宙的起源和演化,研究黑洞、暗物质和暗能量等未解之谜。
除了科学研究,射电望远镜在其他领域也有广泛的应用。
它可以被用于卫星通信、雷达监测、天气预报和无线电测量等方面。
射电望远镜还可以与其他类型的望远镜联合观测,形成多波段的观测网络,提供更全面的天文数据。
总之,射电望远镜作为一种专门用于探索射电信号的仪器,在天文学、物理学和工程学等领域都发挥着重要的作用。
随着技术的不断进步,射电望远镜的观测能力将进一步提高,我们对宇宙的认识也将不断深化。
地球的孪生兄弟:生存环境比木星还恶劣