什么是四维空间?四维物体有何奇特之处?

在对宇宙进行描述时,我们经常会提到四维时空这个概念,然而不少朋友对四维时空产生了误解,将其与四维空间等同到了一起。
下面我们就先来简单的介绍一下 四维时空与四维空间的关系 。
所谓时空,指的是时间与
【菜科解读】
四维空间这个经常出现在科幻题材的小说中的概念,到底是什么样的呢?
这里请注意空间二字,因为不少人会将四维空间与四维时空混为一谈。
在对宇宙进行描述时,我们经常会提到四维时空这个概念,然而不少朋友对四维时空产生了误解,将其与四维空间等同到了一起。
下面我们就先来简单的介绍一下四维时空与四维空间的关系。
所谓时空,指的是时间与空间的集合,而空间一般认为是三维的,时间作为单独的一维存在,二者组合成了四维时空。
实际上这个四维时空,是相对论中常用的概念,是当年爱因斯坦的老师闵可夫斯基在狭义相对论问世后对其进行了数学优化后才有的概念,闵可夫斯基本人将四维时空称之为世界。
那么四维空间又是什么呢?如果你将上段内容看明白了,那么四维空间其实也就懂了,无非就是空间的维度变为了四个,而时间这一维并没有考虑进去(否则就叫五维时空)。
说到这,一个很自然的疑问就来了,四维空间到底是什么模样,里面的物体又是以何种方式存在的呢?
虽然嘴上说着容易,虽然我们作为三维空间里的生物,自认为对三维空间已经十分了解,似乎只是比三维空间多一维的四维空间理应很好想象出来,但实际上我们对四维空间的模样都无法清晰的认知,有人不相信四维空间有这么难想,那就看看下面的例子吧
先从二维和三维空间的角度来讲解我们假设一个三维球体穿越二维平面的场景,如下图所示:
上图左侧是二维空间中出现的画面,右侧是三维空间出现的画面,这两种情况都很好理解。
现在我们再过渡到三维和四维空间当中首先对于四维空间中的球体,我们有个专用的称呼,叫做:超球体(实际上更广泛的来讲,四维空间中的任意物体形状都被称为超体),那么当超球体穿过某个三维空间区域会怎么样呢?如下图:
由于我们画不出超球体的真实面目,因此只能用上图右侧的镂空球体来表示,而这个镂空球体穿过的正是三维空间,那么对于这个超球体在三维空间中体现出来的样子到底如何呢?按照之前在球体在二维和三维空间中的变化,我们可以推测超球体在三维空间中是以一个不断变化体积的球体形式出现的,就如上图左侧所示一般。
刚才我们是从物体移动的角度去观测超体在三维空间的表现,如果变为超体旋转,那么在三维空间的表现又是如何呢?
下面用投影的办法来看看超体在三维空间的表现吧。
(所谓投影,顾名思义,也就是用光照射物体,将其影子投放到一个面上)
先从三维立方体的投影说起假设一个立方体在空中转动,此时有一束光照射其上,于是立方体的影子就被投影到了一个二维平面上,由于立方体是转动的,因此影子的形状也在变化,如果进一步假定立方体的每个面都是透光的,那么就如下图所示:
那么会是怎样的一番场景呢?如下图所示:
#p#分页标题#e#这就是超立方体在三维空间的投影,随着超立方体的转动,三维投影也跟着变化。
结合上述两个例子,你能想象出超球体和超立方体在四维空间中的真实模样吗?
想不出来?没关系,下面让我们来一把四维生物的奇妙体验吧我们在中小学时期应该听过这样的的说法:连点成线,连线成面,连面成体,实际上这里体现的就是空间维度上升带来的变化。
我们利用空间直角坐标系进行讲解
试想一个位于一维空间的一维生物,所谓一维空间也就是坐标系上的一个轴而已,只有长度,没有宽度和高度,由此可见这个一维生物的体型就是一条线段,此时我们以这个一维生物的视角来观察一维空间,很显然出现在我们眼前的世界就是一个点。
此时我们将空间维度增加一条,也就是所谓的二维空间(即坐标系上又两条坐标轴确定的一个平面),不严格的讲,这个二维空间实际上就和咱们平时用的纸的纸面是一回事,无论纸面上的内容多么丰富,也都只能局限于纸面,无法跳出纸面(没有高度)。
如果我们以二维空间的生物视角去观察这个世界,会发现整个世界不过是无数条线罢了。
现在让我们回到三维空间,也就是用空间直角坐标系确定的空间,按照前面的逻辑,我们看到的世界应该是无数幅二维画面组成的,说到这,可能又很多朋友疑惑了,怎么能是二维画面呢?我们眼睛看到的画面都是立体的啊。
原因很简单,这全是大脑和两只眼睛的功劳,用一个简单的实验就可以反驳,闭起一只眼睛,两只手各拿一支笔,先在空中随便挥几圈,之后用另一只眼睛注视着,手拿笔,使两笔尖对碰,看看要几次才能成功,若不是一次就能成功,就足以说明问题了(实际上,最好方式是用一些不熟悉的物体进行实验)。
最后让我们进入四维空间,看看从四维空间的生物的视角看世界会有什么样的表现呢?
按照之前几个空间进行类推,在四维生物的眼中,世界应该是一幅幅三维立体的画面,一个简单的例子,假设在三维空间中有个立方体箱子,你站在箱子面前,试问你能看到这个箱子的几个面?
很显然,在不借助外部工具的情况下,无论如何是不可能同时看到六个面的。
然而这件事对于四维生物来讲,却显得非常容易,因为它们能看到三维画面,也就是说可以同时看到箱子的六个面。
当然了,上述例子仅仅是对四维生物的管中窥豹而已,然后在面对如此神奇的四维空间之后,我们不禁要问,四维空间真的存在吗?实际上这个问题就等于在问,除了三维空间加一维时间组成的四维时空之外,是否还存在空间的其它维度没有被发现。
遗憾的是,对于四维空间乃至更加高维的空间(比如M理论中存在着九维或十维空间)的研究还仅仅停留在纸面上,并没有具体切实的实验证据支持,但我们也不能否定高维空间的存在。
本篇文章的内容到此结束。
地球连续35年收到神奇规律性信号?莫非真有外星人?
不过今日的一项研究成果登上了热搜,或暗示着可能存在地外生命的可能性。
7月19日,一篇题为《三十年的长周期无线电瞬变活动》的研究文章在《自然》杂志上刊发。
研究人员发现,至少从1988年起,一个神奇的外宇宙来源不断以22分钟的频率定期向地球发射无线电波。
目前,多国科学家纷纷开始观测这一神奇源头,试图努力解决围绕这个天体的神奇,它究竟是脉冲星、磁星,还是外星生命试图联系地球上的人类?未知外宇宙物体35年来不断发出神奇电波图源红星新闻在长达数月的时间里,国际射电天文学研究中心ICRAR的科学家们每三个晚上就会使用位于澳大利亚的默奇森广域阵列射电望远镜扫描一次银河系。
很快,他们就有了令人振奋的发现:“几乎在我们刚开始观察的时候,就在天空发现了一个新的光源,每22分钟重复一次。
”通过对长达35年的观测数据进行计算,研究人员得到了精确的脉冲时间,“源头就像时钟一样,每1318.1957秒产生一次,误差为十分之一毫秒。
”然而,这一信号波与此前在地球上看到的都不同,也不符合目前存在的任何理论。
脉冲星发出的无线电信号图源红星新闻研究人员刚开始怀疑这是一颗脉冲星。
但如果它是一颗脉冲星,那么其运行方式似乎并不符合现有的科学理论定义。
如果引力波强到足以在地球上被探测到,那么这个代号为GPMJ1839-10的天体的旋转速度一定非常快。
然而,“目标看起来很像脉冲星,但旋转速度要慢上1000倍。
”与预期相悖。
该研究一经发布就引起了人们的广泛关注,还登上了微博等平台的热搜。
不少网友表示,这或许是其它地外文明发往地球的信号。
虽然目前还没有证据能够证明,但是在茫茫宇宙中,有巨大概率存在与人类相似的其他生物和文明。
外星人的联络请求?地球连续35年收到神奇规律性信号,到底是什么
研究人员发现,至少从1988年起,一个神奇的外宇宙来源不断以22分钟的频率定期向地球发射无线电波。
然而,研究人员并不知道这些神奇信号的源头是什么,因为其电波的性质并不符合世界上任何已知的理论和模型。
而目前我们所观测到的这种脉冲信号,统称为:快速射电暴。
快速射电暴从1987年开始,地球上的一些射电望远镜就开始探测到一些来自遥远宇宙的短暂而强烈的无线电波脉冲,这些脉冲被称为快速射电暴Fast Radio Bursts,FRB。
快速射电暴持续时间极短,通常只有几毫秒,但能够释放出相当于太阳在一整天内释放的能量。
快速射电暴的起源和物理机制目前还不清楚,有多种可能的理论模型来解释它们,如中子星合并、磁星爆发、超新星遗迹、黑洞碰撞等。
快速射电暴有两种类型:单次爆发和重复爆发。
单次爆发只出现一次,而重复爆发则在同一位置多次出现。
目前已经探测到的快速射电暴中,大部分是单次爆发,只有不到10例是重复爆发。
重复爆发的快速射电暴中,有一例特别引人注目,这个射电源被命名为GPM J1839−10,它位于距离地球约1.5万光年的银河系内。
GPM J1839−10的脉冲周期为1320秒22分钟,期间有一个400秒的窗口,爆发会持续30到300秒。
GPM J1839−10的脉冲亮度约为0.1焦耳/赫兹,相当于太阳在射电波段的亮度。
GPM J1839−10的脉冲信号最早可上溯到1988年,至今已经持续了30多年,是目前已知最长寿命的射电瞬变源。
三十年的长周期无线电瞬变活动与快速射电暴有什么关系?高能物理现象相似之处在于,它们都是一种高能天体物理现象,呈现瞬态电波脉冲,来自河外或宇宙学起源。
快速射电暴是一种高能天体物理现象,呈现瞬态电波脉冲,仅维持数毫秒的爆发。
快速射电暴的特征主要包括以下几个方面:持续时间:快速射电暴的持续时间通常在几毫秒到几十毫秒之间,最短的只有0.3毫秒,最长的也不超过30毫秒。
色散量:快速射电暴的色散量是指不同频率的无线电波到达地球的时间延迟,它反映了无线电波在传播过程中经过了多少自由电子。
快速射电暴的色散量通常在几百到几千之间,远远超过银河系星际介质的贡献,表明它们是河外或宇宙学起源。
亮度:快速射电暴的亮度是指其在某一频率下的辐射强度,它反映了其释放能量的大小。
快速射电暴的亮度通常在几百到几千之间,是目前已知最亮的射电天体现象之一。
偏振:快速射电暴的偏振是指其无线电波振动方向的规律性,它反映了其辐射机制和传播环境。
快速射电暴的偏振可以分为线偏振和圆偏振,其中线偏振表明无线电波振动方向固定或变化缓慢,圆偏振表明无线电波振动方向以螺旋形变化。
快速射电暴中有些具有较高的线偏振或圆偏振,有些则没有明显的偏振。
频谱:快速射电暴的频谱是指其在不同频率下的辐射强度分布,它反映了其辐射范围和特征。
快速射电暴的频谱可以分为平滑和结构化两种,其中平滑表明其辐射强度随频率变化平缓或无规律,结构化表明其辐射强度随频率变化出现峰谷或周期性。
快速射电暴中有些具有平滑或结构化的频谱,有些则没有明确的频谱形状。
单次爆发和重复爆发单次爆发:单次爆发是指只出现一次,没有重复观测到的快速射电暴。
单次爆发占据了大多数已探测到的快速射电暴样本,它们可能是由一次性或不可逆转的事件产生,如中子星合并、黑洞碰撞等。
单次爆发通常具有较低的色散量、较高的亮度、较弱或无偏振、较平滑或无规律的频谱等特征。
重复爆发:重复爆发是指在同一位置多次出现,有重复观测到的快速射电暴。
重复爆发占据了少数已探测到的快速射电暴样本,它们可能是由可重复或可逆转的事件产生,如磁星爆发、脉冲星风暴等。
重复爆发通常具有较高的色散量、较低的亮度、较强或有规律的偏振、较结构化或有周期性的频谱等特征。
外星人的信号?从科学的角度来看,规律性射电暴更可能是由自然的物理过程产生,而不是由智能生命设计 。
一方面,规律性射电暴的周期性并不完全稳定,而是存在一定的变化和不确定性 。
如果它们是由外星人发送的信号,那么应该具有更精确和固定的时间模式。
另一方面,规律性射电暴的频谱和偏振也并不完全平滑和规则,而是存在一定的结构和变化 。
如果它们是由外星人发送的信号,那么应该具有更简单和明确的信息编码方式。
此外,规律性射电暴所在的位置和环境也并不适合智能生命存在和发展 。
FRB 121102位于一个矮星系内,该星系可能经历了近期的太阳形成活动和超新星爆发 。
FRB 180916.J0158+65位于一个螺旋星系内,该星系可能存在一个中等质量黑洞或一个致密太阳团。
FRB 180916.J0158+65位于一个螺旋星系内,该星系可能存在一个中等质量黑洞或一个致密太阳团 。
这些环境都具有极端的温度、密度、磁场和辐射,对智能生命的生存和通信都不利。
本文总结因此,规律性射电暴更可能是由某种天体物理机制产生,而不是由外星人发送的信号。
一种可能的解释是,规律性射电暴源体是一种高速自转的高磁场中子星,即磁星 。
磁星会不定期地发生强烈的磁场重构,导致其表面和外层发生剧烈的震动和裂变,从而产生快速射电暴 。
磁星的自转周期和轨道周期可能会影响其磁场重构的频率和强度,从而导致其快速射电暴呈现出一定的周期性 。
虽然GPM J1839−10可能不是外星人发送的信号,但是毫无疑问的是,宇宙的浩瀚,存在着无数的文明和星球,只不过目前人类还没有发现为止,我们更加研发更加先进的技术,去寻找外星文明,而不是让他们发现地球的存在。
#所见所得,都很科学##地球连续35年收到神奇规律性信号#