李会超:火星,中国一定要去?

而天问也成为了我国行星探测任务的共同名称。
从天问的任务标志看,未来中国的探测器不只将光顾火星,太阳系的其他大行星和卫星也将是我们的探测目标。
目前,大部分航天器主要工作在地球附近,已经能够直接服务社会生产生活,提供通信、导航
【菜科解读】
在东方红一号成功发射50周年的日子,我国公布了航天工程下一个里程碑式的任务——天问一号,即火星探测。
而天问也成为了我国行星探测任务的共同名称。
从天问的任务标志看,未来中国的探测器不只将光顾火星,太阳系的其他大行星和卫星也将是我们的探测目标。
目前,大部分航天器主要工作在地球附近,已经能够直接服务社会生产生活,提供通信、导航、对地观测等服务。
近地空间的航天应用已经从早期前瞻性的技术试验领域转化为实行化、商业化的领域,目前相对成熟。
而目前空间探测的前沿,则是远离地球、去往其他天体的深空探测。
从美国等航天强国的发展历程看,月球是深空探测的第一站。
通过嫦娥探月计划的成功实施,我国已经掌握了对月球进行环绕、降落和巡视探测的相关技术,除了月兔号月球车在工作期间出现意外这一插曲外,整体上说嫦娥任务计划进行的相当成功,还在鹊桥号中继卫星的帮助下实现了人类月球背面的首次着陆。
月球之后,人们选择下一个目标往往是火星。
在太阳系中,地球的近邻是火星与金星,都可以作为月球之后的下一个备选目的地。
然而,无论从科学研究角度还是未来对行星的开发利用角度讲,火星是比金星更加理想的选择。
火星全貌
对于生命体来说,火星的环境要比地球恶劣不少。
火星的大气相对稀薄,且主要成分为二氧化碳。
大气中存在着强沙尘暴等恶劣天气,平均温度约零下数十度。
火星没有较强的内禀磁场,无法像地球一样提供对于太阳高能粒子提供足够的抵御。
但相对于其他行星来说,火星与地球的相似度又是最高的。
火星轨道之外的大行星均为气态巨星,它们甚至没有一个可以让我们稳定站立的固体表面,形态与地球有根本上的不同。
而对于地球轨道以内的金星和水星来说,由于距离太阳太近,一方面白天时行星表面温度相比地球高的太多,另一方面太阳的潮汐锁定也使得它们自转一周的时间太长。
比如,金星上的一天相当于地球上的两百多天,因此对于同一地区来说,昼夜不会快速变换,将在较长的时间里处于极寒或极热的状态下。
火星上一天的长度仅比地球稍长,和地球一样在温带地区有着四季的变化,火星表面的地形地貌和地球也有着比较多的相似。
现有研究表明,火星历史上也许曾经是一颗温暖湿润的星球,还有可能孕育过生命,然而火星气候发生的气候变化使得它成为了如今的样子。
从科学研究的角度讲,我们可以从这颗星球表面、内部和附近的空间中,获取关于它过去和现在变化的信息,从中发现行星演化可能的规律,并由此对地球未来可能的命运有所认知。
毕竟一代人或几代人的生命相对于行星演化的时间周期来说都相当短暂,而火星上恰好可能储存了这个过程的纪录片。
好奇号火星车拍摄的火星夏普山,如果不加解释,仅凭图像看,很有可能被误认为是地球上的山峰
火星与地球的相似性也使得它成为太空移民的首选目的地。
目前,已经有如马斯克这样的极客在PPT上勾勒未来火星殖民的蓝图。
虽然这样的愿景何时能够实现尚不可知,但至少火星移民在理论上是具备可能的。
火星上可能存在着大量冻结成冰的水,具有能够提炼成金属的矿藏,也有高浓度甲烷出现的区域。
这些资源,都可以让最初的火星移民在从地球运送来的机械和资源的基础上,在火星就地取材扩大生产,逐步实现自给自足,最终不需再耗费大量成本从地球上运去物资。
至于维系人生存的食品,火星与地球比较接近的气候,也给在火星进行农业生产提供了可能。
植物进行光合作用的原料二氧化碳,是火星大气的主要组成部分。
SpaceX对于未来火星城市的构想图
人类对火星的探测主要可以划分为三个阶段。
第一个阶段开始于上世纪六十年代,以飞掠和着陆探测为主,获得了关于火星的初步认识。
#p#分页标题#e#这一时期比较成功的探测器有美国的水手4号和6号、7号,成功飞掠火星后传回了火星表面的图片;及美国的维京1号和2号,成功在火星表面着陆并进行探测。
由于技术还不成熟,这一时期任务的失败率较高,不但苏联进行的十多次探测一次都没能成功,美国也有数个探测器牺牲在了飞行的不同阶段。
第二个阶段主要在上世纪90年代,美国、日本和俄罗斯的几艘探测器打破了火星探测在80年代的沉寂。
这一时期火星飞行的失败率仍然很高,除美国的火星探路者号和火星全球勘测者号外,美国、俄罗斯和日本的其他8个探测器任务均以失败告终。
机遇号火星车拍摄的其在火星着陆场附近的情况
进入二十一世纪后,火星探测迎来了大发展。
这一时期,环绕火星的探测器和在火星表面着陆和进行巡视的探测器组队出发,在火星上相互配合,取得了令人振奋的成果。
美国的勇气号、机遇号火星车超设计寿命工作,其装配的丰富的科学仪器不但为科学家们带来了大量新发现,还传回了诸多可以让大众身历其境的火星照片。
目前MAVEN、好奇号、洞察号等等后续探测器又在源源不断的获得新的成果。
得益于深空探测技术在失败中获得的进步,进入二十一世纪后火星探测任务的成功率大幅提升。
不同时期在火星表面着陆的探测器
去年10月,我国已经公布了火星探测器的外观图。
综合图片和有关公开文献信息,这艘现在已经被命名为天问一号的探测器由两个部分构成,其中上半部分的钝头体为着陆器,带有喷嘴的下半部分为环绕器。
在发射后,天问一号将进入地火转移轨道飞行,着陆器和环绕器在火星附近分离。
着陆器落地火星表面,除了对落点就地开展探测外,还会放出巡视器(火星车),对落点附近的区域进行进一步探测。
而环绕器则留在环绕火星的轨道上,在进行探测的同时,也充当火星车与地球之间的信使,提供通信中继服务。
我国的火星探测器外观图
从问天一号的配置看,本次任务将同时进行环绕、着陆和巡视三种探测。
从地球出发,进入地球到火星间的转移轨道,经过半年以上的飞行时间正常到达火星,本来也不是一件容易的事情,需要解决轨道设计方面,飞行器自动驾驶(自主控制)和深空通信等多方面的技术问题。
而着陆火星则更加惊险。
从航天器开始进行着陆到最终在火星表面停稳,整个过程大概要在8分钟内完成,但火星到地球的单向通信时间高达15分钟,发送信号再等待地球返回信号最短也要半个小时,因此探测器必须具备强大的自我管理与控制功能,能够将一个又一个不能NG的动作全部正常完成,才能安全降落在火星表面。
虽然我国火星探测的起步相对于美国、欧洲等要晚,但一旦天问一号的任务圆满完成,将会使我们的探测技术水平站到世界前列。
国家天文台武清站用于火星探测测控的70米天线吊装成功,这种天线不但能支撑火星任务,也能为其他未来的深空任务提供服务
如果要对距离地球较远的行星、小行星进行探测,或者像近两年发射的帕克太阳探测器、太阳轨道器那样对太阳实施抵近探测,或是去往遥远的太阳系边缘进行星际探测,一般需要通过其他行星的借力飞行完成,任务的实施难度更大。
只有通过火星探测,掌握了深空探测所必须的轨道设计、高可靠性自动控制、深空测控等方面的技术,才有可能进行难度更大的探测。
总之,如果要想在未来的大航天时代中占有一席之地,火星,中国一定要去。
地球连续35年收到神奇规律性信号?莫非真有外星人?
不过今日的一项研究成果登上了热搜,或暗示着可能存在地外生命的可能性。
7月19日,一篇题为《三十年的长周期无线电瞬变活动》的研究文章在《自然》杂志上刊发。
研究人员发现,至少从1988年起,一个神奇的外宇宙来源不断以22分钟的频率定期向地球发射无线电波。
目前,多国科学家纷纷开始观测这一神奇源头,试图努力解决围绕这个天体的神奇,它究竟是脉冲星、磁星,还是外星生命试图联系地球上的人类?未知外宇宙物体35年来不断发出神奇电波图源红星新闻在长达数月的时间里,国际射电天文学研究中心ICRAR的科学家们每三个晚上就会使用位于澳大利亚的默奇森广域阵列射电望远镜扫描一次银河系。
很快,他们就有了令人振奋的发现:“几乎在我们刚开始观察的时候,就在天空发现了一个新的光源,每22分钟重复一次。
”通过对长达35年的观测数据进行计算,研究人员得到了精确的脉冲时间,“源头就像时钟一样,每1318.1957秒产生一次,误差为十分之一毫秒。
”然而,这一信号波与此前在地球上看到的都不同,也不符合目前存在的任何理论。
脉冲星发出的无线电信号图源红星新闻研究人员刚开始怀疑这是一颗脉冲星。
但如果它是一颗脉冲星,那么其运行方式似乎并不符合现有的科学理论定义。
如果引力波强到足以在地球上被探测到,那么这个代号为GPMJ1839-10的天体的旋转速度一定非常快。
然而,“目标看起来很像脉冲星,但旋转速度要慢上1000倍。
”与预期相悖。
该研究一经发布就引起了人们的广泛关注,还登上了微博等平台的热搜。
不少网友表示,这或许是其它地外文明发往地球的信号。
虽然目前还没有证据能够证明,但是在茫茫宇宙中,有巨大概率存在与人类相似的其他生物和文明。
外星人的联络请求?地球连续35年收到神奇规律性信号,到底是什么
研究人员发现,至少从1988年起,一个神奇的外宇宙来源不断以22分钟的频率定期向地球发射无线电波。
然而,研究人员并不知道这些神奇信号的源头是什么,因为其电波的性质并不符合世界上任何已知的理论和模型。
而目前我们所观测到的这种脉冲信号,统称为:快速射电暴。
快速射电暴从1987年开始,地球上的一些射电望远镜就开始探测到一些来自遥远宇宙的短暂而强烈的无线电波脉冲,这些脉冲被称为快速射电暴Fast Radio Bursts,FRB。
快速射电暴持续时间极短,通常只有几毫秒,但能够释放出相当于太阳在一整天内释放的能量。
快速射电暴的起源和物理机制目前还不清楚,有多种可能的理论模型来解释它们,如中子星合并、磁星爆发、超新星遗迹、黑洞碰撞等。
快速射电暴有两种类型:单次爆发和重复爆发。
单次爆发只出现一次,而重复爆发则在同一位置多次出现。
目前已经探测到的快速射电暴中,大部分是单次爆发,只有不到10例是重复爆发。
重复爆发的快速射电暴中,有一例特别引人注目,这个射电源被命名为GPM J1839−10,它位于距离地球约1.5万光年的银河系内。
GPM J1839−10的脉冲周期为1320秒22分钟,期间有一个400秒的窗口,爆发会持续30到300秒。
GPM J1839−10的脉冲亮度约为0.1焦耳/赫兹,相当于太阳在射电波段的亮度。
GPM J1839−10的脉冲信号最早可上溯到1988年,至今已经持续了30多年,是目前已知最长寿命的射电瞬变源。
三十年的长周期无线电瞬变活动与快速射电暴有什么关系?高能物理现象相似之处在于,它们都是一种高能天体物理现象,呈现瞬态电波脉冲,来自河外或宇宙学起源。
快速射电暴是一种高能天体物理现象,呈现瞬态电波脉冲,仅维持数毫秒的爆发。
快速射电暴的特征主要包括以下几个方面:持续时间:快速射电暴的持续时间通常在几毫秒到几十毫秒之间,最短的只有0.3毫秒,最长的也不超过30毫秒。
色散量:快速射电暴的色散量是指不同频率的无线电波到达地球的时间延迟,它反映了无线电波在传播过程中经过了多少自由电子。
快速射电暴的色散量通常在几百到几千之间,远远超过银河系星际介质的贡献,表明它们是河外或宇宙学起源。
亮度:快速射电暴的亮度是指其在某一频率下的辐射强度,它反映了其释放能量的大小。
快速射电暴的亮度通常在几百到几千之间,是目前已知最亮的射电天体现象之一。
偏振:快速射电暴的偏振是指其无线电波振动方向的规律性,它反映了其辐射机制和传播环境。
快速射电暴的偏振可以分为线偏振和圆偏振,其中线偏振表明无线电波振动方向固定或变化缓慢,圆偏振表明无线电波振动方向以螺旋形变化。
快速射电暴中有些具有较高的线偏振或圆偏振,有些则没有明显的偏振。
频谱:快速射电暴的频谱是指其在不同频率下的辐射强度分布,它反映了其辐射范围和特征。
快速射电暴的频谱可以分为平滑和结构化两种,其中平滑表明其辐射强度随频率变化平缓或无规律,结构化表明其辐射强度随频率变化出现峰谷或周期性。
快速射电暴中有些具有平滑或结构化的频谱,有些则没有明确的频谱形状。
单次爆发和重复爆发单次爆发:单次爆发是指只出现一次,没有重复观测到的快速射电暴。
单次爆发占据了大多数已探测到的快速射电暴样本,它们可能是由一次性或不可逆转的事件产生,如中子星合并、黑洞碰撞等。
单次爆发通常具有较低的色散量、较高的亮度、较弱或无偏振、较平滑或无规律的频谱等特征。
重复爆发:重复爆发是指在同一位置多次出现,有重复观测到的快速射电暴。
重复爆发占据了少数已探测到的快速射电暴样本,它们可能是由可重复或可逆转的事件产生,如磁星爆发、脉冲星风暴等。
重复爆发通常具有较高的色散量、较低的亮度、较强或有规律的偏振、较结构化或有周期性的频谱等特征。
外星人的信号?从科学的角度来看,规律性射电暴更可能是由自然的物理过程产生,而不是由智能生命设计 。
一方面,规律性射电暴的周期性并不完全稳定,而是存在一定的变化和不确定性 。
如果它们是由外星人发送的信号,那么应该具有更精确和固定的时间模式。
另一方面,规律性射电暴的频谱和偏振也并不完全平滑和规则,而是存在一定的结构和变化 。
如果它们是由外星人发送的信号,那么应该具有更简单和明确的信息编码方式。
此外,规律性射电暴所在的位置和环境也并不适合智能生命存在和发展 。
FRB 121102位于一个矮星系内,该星系可能经历了近期的太阳形成活动和超新星爆发 。
FRB 180916.J0158+65位于一个螺旋星系内,该星系可能存在一个中等质量黑洞或一个致密太阳团。
FRB 180916.J0158+65位于一个螺旋星系内,该星系可能存在一个中等质量黑洞或一个致密太阳团 。
这些环境都具有极端的温度、密度、磁场和辐射,对智能生命的生存和通信都不利。
本文总结因此,规律性射电暴更可能是由某种天体物理机制产生,而不是由外星人发送的信号。
一种可能的解释是,规律性射电暴源体是一种高速自转的高磁场中子星,即磁星 。
磁星会不定期地发生强烈的磁场重构,导致其表面和外层发生剧烈的震动和裂变,从而产生快速射电暴 。
磁星的自转周期和轨道周期可能会影响其磁场重构的频率和强度,从而导致其快速射电暴呈现出一定的周期性 。
虽然GPM J1839−10可能不是外星人发送的信号,但是毫无疑问的是,宇宙的浩瀚,存在着无数的文明和星球,只不过目前人类还没有发现为止,我们更加研发更加先进的技术,去寻找外星文明,而不是让他们发现地球的存在。
#所见所得,都很科学##地球连续35年收到神奇规律性信号#