大爆炸后超大质量黑洞是变得如此之大如此之快

作者:小菜 更新时间:2025-04-27 点击数:
简介:艺术家对超大质量黑洞的渲染。

图片鸣谢:uux.cn/马克·加尔利克/科学图片库/盖蒂图片社网美国太空网(罗伯特·李)::科学家们现在明白,超大质量黑洞潜伏在大多数 如果不是全部星系的中心。

这些宇宙巨人的质量是太阳的数百万甚至数十亿倍,然而当超大质量黑洞出现在局部宇宙中,从而出现在宇宙历史中时,巨大的体积并不构成问题。

然而,超大质量黑

【菜科解读】

艺术家对超大质量黑洞的渲染。

图片鸣谢:uux.cn/马克·加尔利克/科学图片库/盖蒂图片社网美国太空网(罗伯特·李)::科学家们现在明白,超大质量黑洞潜伏在大多数 如果不是全部星系的中心。

这些宇宙巨人的质量是太阳的数百万甚至数十亿倍,然而当超大质量黑洞出现在局部宇宙中,从而出现在宇宙历史中时,巨大的体积并不构成问题。

然而,超大质量黑洞成为一个问题,当它们在早期宇宙中被发现时,它们已经有相当于几十亿个太阳的质量。

这是因为一定有某种机制允许超大质量黑洞快速聚集质量并增长到如此巨大的尺寸,然而所有现有的增长机制都表明这一过程进展太慢,像这样的物体在大爆炸后就不存在了。

在过去的二十年里,天文学家发现了超大质量黑洞,其质量与本地宇宙相同,因此是更近的宇宙——几十亿个太阳质量——大约在130亿年前,大爆炸后不到10亿年,Maynooth大学的皇家社会大学研究员约翰·里根告诉Space.com。

里根用一个有点令人不安的类比描述了这个问题。

这就像看到一个家庭走在街上,他们有两个六英尺高的青少年,但他们也有一个六英尺高的蹒跚学步的孩子。

这就有点问题了,这个蹒跚学步的孩子是怎么长得这么高的?宇宙中的超大质量黑洞也是如此。

它们是如何这么快变得如此巨大的?今年,当詹姆斯·韦伯太空望远镜 JWST发现了最遥远和最早的超大质量黑洞时,这个问题变得更加复杂。

这个黑洞位于CEERS 1019星系的中心,质量是太阳的900万倍,这使得它对于超大质量黑洞来说相对较小。

然而,即使在这种规模下,大爆炸后仅5.7亿年就存在的黑洞对黑洞增长理论提出了挑战。

这个900万太阳质量的黑洞并不孤单。

揭示这个超大质量黑洞的同一个观测活动,宇宙演化早期释放科学 CEERS调查,也发现了另外两个超大质量黑洞,它们分别存在于大爆炸后的10亿年和11亿年。

加拿大西安大略大学教授Shantanu Basu告诉Space.com说:随着每一个新的发现,我们现有想法的约束变得更强。

当大爆炸后8亿年发现超大质量黑洞时,我们很担心。

CEERS极大地增加了挑战。

这表明超大质量黑洞在宇宙的相对婴儿期是常见的,而不是一些宇宙罕见的东西,因此给寻找解释它们如何到达那里的机制带来了更大的压力。

黑洞是如何控制自己的饮食的?除去宇宙大爆炸后遗留下来的原始黑洞,黑洞的三个主要类别是恒星质量黑洞,其质量是太阳的5至100倍,中等质量黑洞的质量是太阳的100至10,000倍,以及上述质量的超大质量黑洞。

当最大质量的恒星 相当于30到130个太阳质量耗尽核聚变燃料,无法再抵抗自身重力时,就会形成恒星质量黑洞。

当这些恒星的外层在巨大的超新星爆炸中被吹走时,核心坍塌产生了恒星质量的黑洞——空间区域的中心有一个无限密度的点,称为奇点,外部边界称为事件视界,重力如此之大,甚至连光都无法逃离它。

超大质量黑洞必须以不同于恒星质量黑洞的方式形成,因为一颗恒星不可能大到足以拥有初始质量来摆脱质量,因为它通过像超新星这样的事件演变,伴随着恒星的引力坍缩,但仍然留下一个足够大的核心,成为超大质量黑洞。

多年来,天文学家一直认为超大质量黑洞可以从比它小得多的种子黑洞开始它们的生命。

首先以物质为食,然后在它们所在的星系碰撞时与其他黑洞合并,这也为这些萌芽的超大质量黑洞提供了气体和尘埃。

当这些宇宙种子发现自己被大量物质包围并贪婪地享用这些物质以快速成长为超大质量黑洞时,恒星质量黑洞种子的增长可能会发生。

宇宙的时间线。

在宇宙大爆炸数十亿年后发现超大质量黑洞是意料之中的,但在第一批恒星形成时发现它们更令人惊讶。

图片来源:uux.cn/欧空局然而,这个过程应该被称为爱丁顿极限的东西所阻碍。

正在进食的黑洞的光度或亮度与它们聚集质量的速度成正比。

黑洞消耗物质越快,增长越快,增长越快,周围环境喷出的电磁辐射就越多。

但是,如果黑洞周围以射流形式发出的电磁辐射足够强烈,它就会以物理方式将物质推开。

这意味着黑洞吃得越快,它的食物供应就越有可能被中断和推开,从而停止增长。

艾丁顿极限意味着黑洞需要数十亿年才能吸积足够的物质达到超大质量黑洞的状态。

里根是一个研究小组的成员,该小组研究了一种名为超级爱丁顿吸积的东西,这可以解释早期宇宙中超大质量黑洞的快速增长。

他解释说,这不会有什么特别的,只是正常黑洞进食的一个更快速的版本这将导致进料的快速发作,物料被喷嘴推开,停止进料,从而切断喷嘴。

这使得物质落回黑洞,从而引发另一轮疯狂的盛宴。

然而,里根和他的同事发现这种解释并不令人满意。

如果你把这个喂食周期平均一段时间,它实际上比爱丁顿率要低,里甘说。

一两个周期可能没问题,但总的来说,随着时间的推移,这不是很好,因为它不会持续下去。

所以我们没有发现这不是一个真正解释超大质量黑洞增长的伟大机制。

黑洞能走捷径获得超大质量状态吗?Regan说,另一种可能有助于解释超大质量黑洞的快速增长的想法是,它们从中增长的种子黑洞是巨大的。

#p#分页标题#e#

我们有轻种子和重种子,所以超大质量黑洞可能在100个太阳质量时诞生,并一直发展到超大质量黑洞,或者它们可能从比太阳大10万个质量开始,并从那里发展,里根说。

如果它们想要成长,一个小黑洞必须格外幸运,发现自己处于一个周围有很多很多气体的稠密环境中。

但这不太可能。

它比一个小黑洞更有可能在没有气体的环境中找到自己。

所以那些小黑洞种子不太可能生长。

巨大的黑洞种子仍将不得不进入这些密集的环境,但至少它们会领先于较小的种子。

回到六英尺婴儿的类比,里根解释说,如果这个孩子出生时有普通婴儿的长度,那么这个孩子的成长就更难解释了。

但是,如果这个婴儿出生的时候已经有三英尺长了,那么他变成六英尺高的蹒跚学步的孩子就不难解释了。

一幅插图显示了一个正在进食的超大质量黑洞。

这些物体的早期例子是如何在大爆炸后这么快就变得如此巨大的? 图片鸣谢:uux.cn/NRAO/AUI/美国国家科学基金会,s .达格内洛对此进行研究的问题是,与蹒跚学步的孩子不同,黑洞除了它们的质量、角动量 自旋和电荷之外,缺乏任何特征。

科学家称之为无毛定理,这意味着黑洞看似简单,并不携带关于其历史或进化的信息。

如果你在你的花园里发现了一个黑洞,你不能通过观察它来了解它,不知道它是昨天、一分钟前还是十亿年前到达那里的。

它没有历史,没有指纹,他继续说道。

所以当我们观察今天或130亿年前的黑洞时,我们不知道它的年龄,所以我们不知道它能够增长多久。

Basu补充说,观察早期宇宙中黑洞膨胀的喂养过程是不可能的,因为它离我们如此遥远,但检测超大质量黑洞喂养在未来可能是可能的。

早期宇宙中假设的超大质量恒星会非常明亮,亮度可能是我们太阳的100亿倍。

如果这些天体在宇宙大爆炸后的几亿年后还存在,詹姆斯·韦伯太空望远镜 JWST或欧几里德望远镜就有可能探测到它们。

尽管存在这些问题,Regan相信,通过研究早期宇宙中的黑洞和潜在的重种子,科学家将很快能够构建一个超大质量黑洞增长图。

他特别指出了激光干涉仪天基天线 LISA的发射,这是一种天基引力波探测器,将帮助科学家更好地限制早期宇宙中黑洞的人口统计数据。

我认为我们在过去10年取得了巨大的进步。

巨大的。

在未来十年,我们也将继续取得巨大进展。

,里根说。

从这些人口统计数据中推断出来,将让我们非常非常好地处理遥远宇宙中发生的合并数量,这些合并涉及的黑洞正好在我们需要的质量范围内,质量约为太阳的10万倍。

我认为我们很有可能在未来5到10年内解决这个问题。

外星人的联络请求?地球连续35年收到神奇规律性信号,到底是什么

外星人的请求?外星人的联络请求?地球连续35年收到神奇规律性信号,到底是什么?国际著名期刊《自然》一篇题为《三十年的长周期无线电瞬变活动》的研究在杂志上刊发。

研究人员发现,至少从1988年起,一个神奇的外宇宙来源不断以22分钟的频率定期向地球发射无线电波。

然而,研究人员并不知道这些神奇信号的源头是什么,因为其电波的性质并不符合世界上任何已知的理论和模型。

而目前我们所观测到的这种脉冲信号,统称为:快速射电暴。

快速射电暴从1987年开始,地球上的一些射电望远镜就开始探测到一些来自遥远宇宙的短暂而强烈的无线电波脉冲,这些脉冲被称为快速射电暴Fast Radio Bursts,FRB。

快速射电暴持续时间极短,通常只有几毫秒,但能够释放出相当于太阳在一整天内释放的能量。

快速射电暴的起源和物理机制目前还不清楚,有多种可能的理论模型来解释它们,如中子星合并、磁星爆发、超新星遗迹、黑洞碰撞等。

快速射电暴有两种类型:单次爆发和重复爆发。

单次爆发只出现一次,而重复爆发则在同一位置多次出现。

目前已经探测到的快速射电暴中,大部分是单次爆发,只有不到10例是重复爆发。

重复爆发的快速射电暴中,有一例特别引人注目,这个射电源被命名为GPM J1839−10,它位于距离地球约1.5万光年的银河系内。

GPM J1839−10的脉冲周期为1320秒22分钟,期间有一个400秒的窗口,爆发会持续30到300秒。

GPM J1839−10的脉冲亮度约为0.1焦耳/赫兹,相当于太阳在射电波段的亮度。

GPM J1839−10的脉冲信号最早可上溯到1988年,至今已经持续了30多年,是目前已知最长寿命的射电瞬变源。

三十年的长周期无线电瞬变活动与快速射电暴有什么关系?高能物理现象相似之处在于,它们都是一种高能天体物理现象,呈现瞬态电波脉冲,来自河外或宇宙学起源。

快速射电暴是一种高能天体物理现象,呈现瞬态电波脉冲,仅维持数毫秒的爆发。

快速射电暴的特征主要包括以下几个方面:持续时间:快速射电暴的持续时间通常在几毫秒到几十毫秒之间,最短的只有0.3毫秒,最长的也不超过30毫秒。

色散量:快速射电暴的色散量是指不同频率的无线电波到达地球的时间延迟,它反映了无线电波在传播过程中经过了多少自由电子。

快速射电暴的色散量通常在几百到几千之间,远远超过银河系星际介质的贡献,表明它们是河外或宇宙学起源。

亮度:快速射电暴的亮度是指其在某一频率下的辐射强度,它反映了其释放能量的大小。

快速射电暴的亮度通常在几百到几千之间,是目前已知最亮的射电天体现象之一。

偏振:快速射电暴的偏振是指其无线电波振动方向的规律性,它反映了其辐射机制和传播环境。

快速射电暴的偏振可以分为线偏振和圆偏振,其中线偏振表明无线电波振动方向固定或变化缓慢,圆偏振表明无线电波振动方向以螺旋形变化。

快速射电暴中有些具有较高的线偏振或圆偏振,有些则没有明显的偏振。

频谱:快速射电暴的频谱是指其在不同频率下的辐射强度分布,它反映了其辐射范围和特征。

快速射电暴的频谱可以分为平滑和结构化两种,其中平滑表明其辐射强度随频率变化平缓或无规律,结构化表明其辐射强度随频率变化出现峰谷或周期性。

快速射电暴中有些具有平滑或结构化的频谱,有些则没有明确的频谱形状。

单次爆发和重复爆发单次爆发:单次爆发是指只出现一次,没有重复观测到的快速射电暴。

单次爆发占据了大多数已探测到的快速射电暴样本,它们可能是由一次性或不可逆转的事件产生,如中子星合并、黑洞碰撞等。

单次爆发通常具有较低的色散量、较高的亮度、较弱或无偏振、较平滑或无规律的频谱等特征。

重复爆发:重复爆发是指在同一位置多次出现,有重复观测到的快速射电暴。

重复爆发占据了少数已探测到的快速射电暴样本,它们可能是由可重复或可逆转的事件产生,如磁星爆发、脉冲星风暴等。

重复爆发通常具有较高的色散量、较低的亮度、较强或有规律的偏振、较结构化或有周期性的频谱等特征。

外星人的信号?从科学的角度来看,规律性射电暴更可能是由自然的物理过程产生,而不是由智能生命设计 。

一方面,规律性射电暴的周期性并不完全稳定,而是存在一定的变化和不确定性 。

如果它们是由外星人发送的信号,那么应该具有更精确和固定的时间模式。

另一方面,规律性射电暴的频谱和偏振也并不完全平滑和规则,而是存在一定的结构和变化 。

如果它们是由外星人发送的信号,那么应该具有更简单和明确的信息编码方式。

此外,规律性射电暴所在的位置和环境也并不适合智能生命存在和发展 。

FRB 121102位于一个矮星系内,该星系可能经历了近期的太阳形成活动和超新星爆发 。

FRB 180916.J0158+65位于一个螺旋星系内,该星系可能存在一个中等质量黑洞或一个致密太阳团。

FRB 180916.J0158+65位于一个螺旋星系内,该星系可能存在一个中等质量黑洞或一个致密太阳团 。

这些环境都具有极端的温度、密度、磁场和辐射,对智能生命的生存和通信都不利。

本文总结因此,规律性射电暴更可能是由某种天体物理机制产生,而不是由外星人发送的信号。

一种可能的解释是,规律性射电暴源体是一种高速自转的高磁场中子星,即磁星 。

磁星会不定期地发生强烈的磁场重构,导致其表面和外层发生剧烈的震动和裂变,从而产生快速射电暴 。

磁星的自转周期和轨道周期可能会影响其磁场重构的频率和强度,从而导致其快速射电暴呈现出一定的周期性 。

虽然GPM J1839−10可能不是外星人发送的信号,但是毫无疑问的是,宇宙的浩瀚,存在着无数的文明和星球,只不过目前人类还没有发现为止,我们更加研发更加先进的技术,去寻找外星文明,而不是让他们发现地球的存在。

#所见所得,都很科学##地球连续35年收到神奇规律性信号#

数字黑洞原理?数字黑洞原理手抄报

1、黑洞6174的原理2、数学黑洞 神奇的数字4953、数字黑洞是什么意思4、数字黑洞原理,数学高手进来帮帮我啊!急啊!如果答案正确,我给悬赏30...5、数字黑洞是什么原理?6、数字黑洞的其他黑洞6174的原理黑洞6174的原理是基于这个四位数的特殊性质。

首先,如果四位数中有任何一位是0,那么在从大到小和从小到大排列后,得到的数都不是四位数,因此不符合条件。

任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。

之所以说6174是数学黑洞,是因为无论你怎么换那4个数字,只要不是完全重复,最后都逃脱不了6174的魔掌。

而这个最大减最小的动作,最多不会超过7次!这又加深了6174的神秘性。

数字黑洞,又称陷阱数。

意思是指由某些阿拉伯数字组成的数字串,经过一定规律的演算之后,都会得出一个相同的结果,这就是数字黑洞的概念。

数学黑洞 神奇的数字495首先,不管任取哪三个数字,由这三个数字组成的最大数与最小数的差都有一个共同的特点,那就是:十位数字是9,个位与百位数字的和是9。

然后得到的下一组数字共有4种,分别是189;279;369;459。

这样的数字称为黑洞数,这样的运算叫做重排求差操作。

于是轻松证明了刚才的猜想:在卡氏运算下,三位数有黑洞数,并且它等于495。

一共七个人,祖父和岳父是一个人,祖母和岳母是一个人,儿媳和其中一位母亲是一个人,和四个孩子当中的一个是一个人,还有三个孙子也就是除了其中一个父亲的三个孩子。

共七个人。

数字黑洞是什么意思数字黑洞是指在某些数字系统中出现的一种现象,即无论输入什么数字,最终得到的数字都相同。

通常情况下,这个相同的数字就称为数字黑洞。

数字黑洞是指某些数字经过一定的运算得到一个循环或确定的答案。

一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点的情况叫数字黑洞。

黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。

数字黑洞原理,数学高手进来帮帮我啊!急啊!如果答案正确,我给悬赏30...一个自然数,奇数就乘2加1,偶数就除2,结果就始终是一。

数字黑洞是指某些数字经过一定的运算得到一个循环或确定的答案。

一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点的情况叫数字黑洞。

这种题就是典型的初中数学拿来吓人的。

其实很简单,但是给一大堆你看不懂或者看似很高深的知识,最后就是让你简单算个数,和这个高深的知识没什么关系,用初中数学完全就可以。

数字黑洞是什么原理?1、黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。

2、数字黑洞产生的原理是基于数学中的数论和排列组合的原理。

通过对选取的数字进行排序和相减,不断得到新的数字,直到最终收敛到黑洞数字。

这个数字在每一轮中都会变得更小,直到最后达到一个稳定状态。

3、数字黑洞是指某些数字经过一定的运算得到一个循环或确定的答案。

4、数字黑洞是指在某些数字系统中出现的一种现象,即无论输入什么数字,最终得到的数字都相同。

通常情况下,这个相同的数字就称为数字黑洞。

5、四位数黑洞6174:把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。

数字黑洞的其他1、数字黑洞是指某些数字经过一定的运算得到一个循环或确定的答案。

2、数字黑洞,又称指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点的情况叫数字黑洞。

黑洞原是天文学中的概念,表示这样一种天体,它的引力场是如此之强,就连光也不能逃脱出来。

3、数学中的123就跟英语中的ABC一样平凡和简单。

4、黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。

5、黑洞数又称陷阱数,是类具有奇特转换特性的整数。

任何一个数字不全相同整数,经有限重排求差操作,总会得某一个或一些数,这些数即为黑洞数。

重排求差操作即组成该数得排后的最大数去重排的最小数。

加入收藏
               

大爆炸后超大质量黑洞是变得如此之大如此之快

点击下载文档

格式为doc格式

  • 账号登录
社交账号登录